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Abstract--The propagation of solid concentration disturbances in fluidized beds in an external magnetic 
field is considered. Both solid particles and the liquid phase are assumed to be simultaneously 
magnetizable. The total fluid-particle interaction force is supposed to include the inertial component 
proportional to the relative acceleration of fluid and particles. The effect of simultaneous magnetization 
of particles and fluid as well as the influence of the inertial component of interphase interaction force on 
the resulting criterion of stability of the uniform fluidization are analysed. Consideration is given to the 
dispersion phenomena in the wave propagation process. The model of propagation of nonlinear waves 
is developed in approximation of small finite-amplitude waves. The basic equations are reduced to the 
Korteweg~le Vries-Burgers equation for the departure of solid concentration from the uniform state. 
Possible configurations of the concentration wavefront are studied, including the oscillating wavefronts 
and small-amplitude shocks. The conditions of realization of each possible configuration are obtained. 
The propagation of a long finite-amplitude nonlinear steady wave is considered. The conditions for the 
existence of the steady concentration wave are derived. The structure of the wavefront is studied and 
the thickness of the front is calculated as a function of magnetic and other physical parameters and the 
concentrations ahead of and behind the front. The conditions across the concentration shock in 
the fluidized bed of magnetic particles are obtained. The shock speed is calculated. The obtained results 
can be used to analyse structures of boundaries of bubbles, slugs and solid clusters formed in magnetically 
stabilized fluidized beds. In conclusion the analogy between the basic equations of magnetic fluidized beds 
and equations of the "particle bed" model by Foscolo & Gibilaro is briefly discussed in order to analyse 
the possibility to apply the developed approach to the study of the considered classes of nonlinear waves 
in conventional fluidized beds. 
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I N T R O D U C T I O N  

A theoretical study of the propaga t ion  of l inear and nonl inear  concent ra t ion  waves in magnetical ly 
stabilized fluidized beds is of  fundamenta l  interest giving informat ion  on the mechanisms of  
format ion  of concent ra t ion  discontinuities,  bubbles  and  slugs as well as on possible methods  of  
stabilization of bubbl ing  beds by external magnetic  fields. 

The theoretical analysis of the propagat ion  of l inear concent ra t ion  waves given by Rosensweig 
(1979, 1985) for gas-sol id fluidized beds has been later extended by Rosensweig & Cyprios (1991) 
for l iquid-sol id  beds; the considerable development  of theory has been achieved in the latter due 
to the considerat ion of fluidized beds of nonmagne t ic  particles in a magnetic  fluid as well as beds 
of  magnetic  particles in a neutral  fluid. It must  be noted that the corrected expressions for magnetic  
forces following from the mean-field theory of  magnet ic  field in a two-phase dispersion were used 
by Rosensweig & Cyprios (1991). However the stability criterion derived in the latter represents 
only the sufficient condi t ion  of l inear stability. 

The necessary and  sufficient cri terion of  magnetic  stabil ization of l iquid-sol id  fluidized beds of 
magnetic  particles in a neutral  fluid has been later obta ined by Sergeev & Muromsky  (1994). 

The further development  of the theoretical analysis of wave propaga t ion  in l iquid-sol id  magnet ic  
fluidized beds requires to use corrected (compared to the cited works) expression for the 
l iquid-part ic le  interact ion force, including,  in particular,  the inertial componen t  of interphase 
interaction.  An  interesting oppor tun i ty  could also be given to the study of fluidized beds in the 
case of s imul taneous  magnet iza t ion of the liquid and solid phases. 
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The analysis of the simplest class of nonlinear concentration disturbances--long concentration 
waves--has been given by Sergeev & Muromsky (1994). The Burgers equation with the nonlinear 
dissipative term has been obtained and the qualitative description has been given for the mechanism 
of  evolution of nonlinear concentration disturbances and to the thickness and amplitude of 
concentration shock fronts formed in fluidized beds. The details of the concentration (voidage) 
distribution at the wavefront has not been studied. 

It can be expected that a certain progress in understanding of  the wave propagation and 
evolution process and, henceforth, formation of bubbles and slugs and structures of their 
boundaries is associated with the analysis of different classes of nonlinear concentration waves in 
a fluidized bed. In particular, a simple description can be given to the nonlinear small-amplitude 
waves, steady waves and concentration shocks on the basis of  general equations of magnetic 
fluidized beds. 

Here we should note the mathematical analogy between the equations of momentum conserva- 
tion of the liquid and solid phases of magnetic fluidized beds and the equations of the well known 
"particle bed" model of conventional fluidized beds proposed by Foscolo & Gibilaro (1984, 1987). 
The mathematical similarity enables to use some of  the principle results obtained in the theory of 
magnetically stabilized bed for the analysis of propagation of nonlinear concentration waves within 
the framework of  the "particle bed" model. 

BASIC E Q U A T I O N S  AND C O N S T I T U T I V E  R E L A T I O N S  

The propagation of one-dimensional disturbances of solid concentration in the vertical direction 
in a fluidized bed of  magnetic particles in a magnetically neutral fluid and/or in a fluidized bed 
of  magnetically neutral particles in a magnetic fluid is considered. The model of two-phase 
dispersion as a double continuum consisting of two mutually penetrating and interacting ideal 
fluids (referred to below as the Two-Fluid Model) is used. The general form of one-dimensional 
mass and momentum conservation equations is as follows: 

~e ~(evf) 
4 - -  = o  [1]  

#t 3z 

& ~(~vp) 
+ = o [2]  

#t ~z 

+ ~ = 1 [3] 

fSvc 8vr'~ apf 
pfe~-ff[ -I- Vf-~z : = az prSg 4- E l  +frm [41 

p p ~ -  + Vp aZ/1 aZ ,op~g --  F 1 + fpm [5] 

where e is the void fraction, ~ the volumetric concentration of solid phase, vr and vp are the 
interstitial fluid velocity and the mean velocity of solid particles, z is the vertical coordinate, Pr and 
pp are the fluid and solid densities respectively, Pr is the fluid pressure, pp is the effective pressure 
of  the solid phase, F l the interphase interaction force, frm and fpm are the magnetic forces exerted 
on the fluid and particles. 

Like in Sergeev & Muromsky (1994), solid particles are assumed to be spherical and to have equal 
diameter dp such that the Reynolds number Re = Udp/v < 1, where U is the superficial undisturbed 
fluid velocity, v kinematic viscosity of the fluid. Unlike the cited work, the total interphase 
interaction force F~ is assumed to contain the additional "inertial" component related to the relative 
acceleration of  the solid and liquid phases. With these assumptions the interphase interaction force 
can be written in the form (see, for example, Jackson 1971): 

~pz f du El=Or -- 18 ~p2v 0t~(e)u -prC(e)-~ [6] 
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where 

u = Vr- Vp [7] 

is the relative velocity of phases; the Richardson-Zaki (1954) form 

• ( e ) = e - "  (n=2.8)  [8] 

is used for the viscous drag function; the effective added mass coefficient for the suspension C(e) 
is often used in the form 

c = - .  [9 ]  
2 

The substantial derivative in the inertial component of the interaction force [6] can be written 
as (see, for example, Jackson 1971) 

d t  =\ t~t  +vr-~z) \t3t +vp ¢3zJ" [10] 

Using the assumptions described in Sergeev & Muromsky (1994), the constitutive relations for 
the magnetic forces can be written in the Kelvin form (see, for example, Rosensweig 1985; 
Rosensweig & Cyprios 1991) 

ffm = #oeMr(Hr) dHf [11] 
dz 

0lip [12] 
f p m  = #o~M.(Hp) ez 

where g0 is the magnetic permeability of vacuum, Hf and Hp are the average local values of the 
magnetic field strength in the liquid and solid phases respectively and Mf(Hf) and Mp(Hp) are the 
magnetizations of phases. 

The hydrodynamic equations [1]-[5] should be considered together with the equations of 
magnetic field: 

H+M=Bo/#o, M=eMf+CtMp, H=eHf+ctHp [13a] 

Mr= zf(Hf)Hf, Mo = zp(Hp)Hp, M = zH [13b] 

where B0 is the magnetic induction of the uniform external field, H and M are respectively the 
average local magnetic field strength and magnetization of two-phase dispersion and Zp, Zf and Z 
are the chord magnetic susceptibilities of liquid phase, solid particles and two-phase dispersion 
respectively. The relationship between susceptibilities is given by the generalization of the 
Clausius-Mosotti formula following from the mean-field theory (see Landauer 1978) in the form 

Z - -  Zr ;(p - Z f  ct [14] 
Z +2Zr+ 3 Zp+ 2Zf+ 3" 

To close the system of equations and constitutive relationships [1]-[14], like in Sergeev & 
Muromsky (1994), we assume below (with the exception of the section dedicated to the steady 
waves), the equation of state of the solid phase is in the form pp -- 0 as a matter of convenience 
due to the lack of a suitably validated constitutive law relating particle pressure in suspensions of 
magnetic particles. It was already noted by Sergeev & Muromsky (1994) that the effective solid 
pressure can be neglected if the magnetization of solid particles satisfies the inequality 

#0M~ ~ pp U :. [15] 

Introducing the dimensionless variables 

z t* U vf _ vp Pr 
Z*=L, =-~t,  v~'=-~, v*-~ ,  p*-prUZ [161 
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where L is the linear scale of disturbances, the dimensionless mass and momentum conservation 
equations can be reduced to (the superscript * is henceforth omitted) 

et + vfez + e(vf)z = 0 [17] 

~t + Vpez - (1 - ~) (Vp)z  = 0 [18]  

[1 + De e-'C(e)]{(vp)t + vp(v,)z} - De[l + e 'C(e)]{(vOt + vr(vf)z} 

- - - ( l - D e ) F r + ~ F r ~ - "  l(vf-vp)+y(e)ez [19] 

where the density (De), Froude (Fr) and Stokes (K) numbers are given by 

gL 18pfvU 
De = p-f Fr = ~: - -  [20] pp, -~5, ppgd~ 

and the "magnetic force" parameter y in [19] is the following: 

- B2 T(e )  [21] 
] 2 o P p U  2 

where 

= ~ : ( M  (H , drip d , f~  
T(Q B~\ p" p j ~ - M f ( H r )  de }" [22] 

The strength of magnetic field within the solid and liquid phases as a function of the local voidage 
should be found from the equations of magnetic field [13] and the Clausius-Mosotti-type formula 
[14] providing that the functions zr(Hf) and Zp(Hp) are known. Henceforth, the parameter 7 can 
be found as a function of the local voidage: Y = 7 (e). The last relation closes the system of [l 7]-[19]. 

The parameter 7 can be explicitly expressed as a function of e in the following cases: 
1. Linear magnetization of phases: Bo/#o ~ Mrs, Bo/Po ~ Mps (here and below the subscript "s" 

denotes the magnetic saturation). The magnetization of solid particles and fluid can be considered 
as linear with respect to magnetic field strength, so that ~f = constant and Zp = constant. From [13] 
and [14] we have: 

T(e) = 2 (g r -  Zp)2(9Z~ ÷ Z 2 + 5Zf~@ + 1 8 Z f +  6Zp + 8) [23] 
(Zr+ l)2{3(Zp + 1) + 2(Zr-  Xo)E} 3 

It can be easily seen from [23] that 7 ~> 0; y = 0 as Zr = Zp, so that the effects created by the magnetic 
properties of fluid can compensate the effects of magnetization of solid particles. 

In the case of nonmagnetic fluid (Zr= 0), [23] reduces to 

T(e) - 2Z2(ZP + 2)(Zp + 4) 
[3 + Xp(1 + 2a)] 3 [24] 

When solid particles are magnetically neutral (Zp = 0), [23] yields: 

2Z~(3Zf + 2)(3Zf + 4) 
T(e) = [25] 

(gf + 1)2( 3 + 2Zfg) 3 " 

2. Magnetically saturated bed: Bo/~to >> Mrs, Bo/#o ~ Mo~. In the case of a strong magnetic field, 
both the fluid and solid particles are magnetically saturated so that M r = Mr, = constant and 
Mp = Mp~ = constant. From [13] and [14] we find: 

2/a02 eM 
T = 3B02 ~ fs - -  M p s )  2' [26] 

In the case of nonmagnetic fluid, [26] reduces to (see Sergeev & Muromsky 1994): 
2 2 

T - 2/~0Mps [27] 
3B20 

For the fluidized bed of nonmagnetic particles in the magnetic fluid [26] yields: 
2 2 2#0Mr~ 

T =  3 B---~0 [281 
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3. Mps ~ Bo/#o ~ Mrs. In this case the solid phase is magnetically saturated, while the linear 
magnetization of the fluid can be assumed, so that Zr = constant, Mp = Mps = constant and T can 
be found in the form: 

2/202 Mps(Zf 4- 1) --/2o'  BoZf 
T = B--~- x (;~r+ 1)2( 3 4- 2Zre) 3 x 

2 B0) [3(Zf 4- 1)(2Zr + 3 ) -  2Z~o¢l(Zr + --(2Zf-I- 3) Zf~oo ~,. l)Mps 

[29] 

It must be noted that T < 0 (2? < 0) if 

Xr+ 1 #20Mps { Xf(3 -Jr- 2Zr8)3"( - '  
1 > . x . > ! 4 -  [ 3 0 ]  

From the results obtained in the next section it follows that when [30] holds, the magnetic field 
has a destabilizing effect on the fluidized bed. 

The expression for 27 can also be obtained in case of magnetically saturated fluid and linear 
magnetization of  solid particles (Mrs~Bo/#o '~Mps) ,  i.e. when Xp=COnstant and 
M r--  Mrs = constant. Since the form of  this expression is rather complicated and it is not used 
below, we omit it here. 

L I N E A R  WAVES AND S T A B I L I T Y  ( S I M U L T A N E O U S  M A G N E T I Z A T I O N  OF 
F L U I D  AND SOLID PARTICLES;  E F F E C T  OF I N E R T I A L  C O M P O N E N T  OF 

I N T E R P A R T I C L E  I N T E R A C T I O N )  

The stability criterion of  the uniform fluidized bed of magnetic particles in the nonmagnetic fluid 
has been obtained by Sergeev & Muromsky (1994) in the case when the inertial component of  the 
interphase interaction force is neglected (C = 0). 

The parameters of the uniform steady state can be found as the following solution of  [17]-[19]: 

x 1 
~g-+-1  __  Vf = VO = -- Vp = O. [31] 

1 - -  D e  ' e0' 

We note that the first formula in [31] gives the estimation for the value of ~. 
Linearizing [17]-[19] in the vicinity of the steady state [31] we obtain the following equation for 

the disturbance of voidage q = e o -  e in the form 

8 0 

where 

eg+ ~(e0 + De(~0 + E0)) C(e) (n +2)~o 
4 =  , E ( e ) -  , C o = - -  [33] 

x Fr e eo 

Co is the velocity of the kinematic concentration wave at e = e0, c~ and c2 are the characteristic 
velocities of  the higher order: 

. 0  t ci.2 e0 + De(~o + Eo) e02 - Ctoeo 7 ~oe~ . [34] 

The steady state is linearly stable while (Witham 1974) 

c2 < Co < Cl. [35] 

Incorporating [34], it can be easily shown that [35] reduces to the stability criterion 

70 > e-3D*(eo; De) [7o = 7(eo)] [36] 
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where 

c~[~(n + 2)(1 - De) + De(n + 1)(1 + E)] 2 + ~ De(l + E)(I  + De E) 
I2, (~; De) = [37] 

5(1 - De) + De(l + E) 

It must be noted that the stability criterion obtained by Sergeev & Muromsky (1994), in the case 
when the inertial component of the total interphase interaction force is neglected, i.e. C = 0 (E = 0), 
has been written in the form being incorrect at De :~ 0. 

The linear stability criteria for fluidized beds of magnetic particles in a nonmagnetic fluid and 
nonmagnetic particles in a magnetic fluid have been obtained by Rosensweig & Cyprios (1991). 
It was already discussed by Sergeev & Muromsky (1994) that the mentioned criteria represent the 
necessary conditions of linear stabilization, while [37] gives both necessary and sufficient conditions. 

From the steady state momentum conservation equations it follows that the undisturbed 
superficial fluid velocity U is the function of voidage in the uniform fluidized bed: 

U = g d ~ ( p P -  pr)ag+2 
18pfV [38] 

SO that the dimensionless function 7(5) defined by [21] can be written in the form 

7(5)=crT(~)~ 2, , ,  [39] 

where the dimensionless parameter a depending only on physical and mechanical properties of 
phases and the strength of the external magnetic field is given by 

324p~vZB2 o 
(7 -- itog2d~pp( P p  _ pf)2 [40] 

and the dimensionless function T(e) is defined in [22]. Incorporating [39] we find the stability 
criterion in the form 

f~(50; De) 
a > - -  [41] 

T(5o) 

where 

f~ = ~2,,+ if~,. [42] 

f2,(~0; De) is given by [37]. 
The explicit form of the stability criterion can be obtained in the following cases: 
1. Linear magnetization of  phases: Bo/#o ~ Mf~, Bo/#o ~ Mp~. The function T(5) is given by [23]. 

In cases of magnetic particles in a nonmagnetic fluid and nonmagnetic particles in a magnetic fluid, 
T(5) reduces to [24] and [25] respectively. 

2. Magnetically saturated bed: Bo/#o >> Mf~, Bo/#o >> Mp~. In this case T does not depend on 
5. Incorporating [26] the stability criterion can be written in the form 

where 

a ,  > f~(5; De) [43] 

216ftop~v2(Mp~- M r J  
a ,  = g2d4ppp( pp _ p,,)2 [44] 

The stability criterion [43] is illustrated in figure 1 for De = 0.36 by the solid line for the function 
C(e) given by [9] and by the dashed line for C = 0 (the detailed view for high solid concentrations, 
i.e. voidages close to E:mf are given in figure l(b). 

It must be noted that the accounting of the inertial effects in the interphase interaction force 
shows the decreasing of the interval of parameters corresponding to the stabilization of the uniform 
state as C(5) ~ 0. The qualitative analysis of the stability criterion for C = 0 in case of nonmagnetic 
fluid is given by Sergeev & Muromsky (1994). 

3. Magnetic saturation of  solid particles, linear magnetization of  fluid: Mp~ ~, Bo/#o ~ M~. The 
function T(5) in [41] is now given by [29]. If Xf= 0, [41], incorporating the function T(5) in the 
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Figure 1. (a) Linear stability criterion. (b) Detailed view for voidages close to ~mf' 

form [29], coincides with [43] and [44] at Mrs = 0. It has been already noted that the destabilizing 
effect is possible in case 3 if [30] is valid. 

Although the stability analysis can be given entirely on the basis of [32] using Witham's 
approach, as it has been done above, to analyse some other features of  the propagation of  linear 
waves, such as dispersion phenomena and the behaviour of  the disturbances reflected from the 
upper boundary of  the bed, we consider the dispersion equation corresponding to the linearized 
system of  [17]-[19]: 

~[co2 _ (el + c2)mk + cl c2k 2] + i(o9 - cok ) = 0 [45] 

where k is the wavenumber, co the frequency. 
To simplify the further analysis we consider the case of high Froude numbers such that 

x Fr >> 1 [46] 

so that ( given by [34] is a small parameter. We should underline here that [46] is typical for a 
wide range of  fluidized beds of  small particles. 

To analyse the dispersion relation following from [45] it is convenient to represent the function 
co(k) in the form of expansion in terms of the small parameter ~. We assume that the magnetic 
field strength and magnetization of phases are not very high so that 7 "~ ~ 2 (hence [c~._,[ ,~ ~-~); 
we also take into account that the principle contribution to the Fourier series of  disturbances is 
given by the components corresponding to wave numbers k -~ O(1). From [45] it follows that the 
dispersion relation co = ~o(k) consists of two branches; the first one corresponds to the waves 
propagating upwards (in the direction of  the undisturbed gas flow): 

= k{co + i l k # ,  + (¢k)2#2 + O[(¢k)3]} [471 

where 

~ = (Co - c l ) ( C o  - c 2 )  = ~ o ~ o  ( t a ,  - ~,) 
e0 + De(or0 + E0) 

[48] 
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D e ( l  + E0)  "~ 
#2 = #, (2co - c, - c2) = 2~080 '/~, n + 2 q c0 ~-ee(70 + E 0 ) J  [491 

and • .  = ~.(c0; De) is given by [37]. It must be noted that the stability criterion in the form [36] 
follows already from the "long-wave" approximation of dispersion relation given by [47] (indeed, 
the condition of stability Im co < 0 immediately leads to [36]). 

The second branch corresponds to the waves propagating downwards (for example, to the waves 
reflected from the upper boundary of the bed). The expansion of this branch in terms of ~ starts 
from the term O(~ ~) :  

1 ~c Fr 
c o = - - i ~ - + O ( 1 ) = - - i  + FO(I)  [50] 

¢ g 1{ 
8 Co + De(s0 + E0 )} 

so that the waves propagating downwards rapidly damp as e x p ( - t / i ) .  This means that for large 
Froude numbers the waves reflected from the upper boundary can be withdrawn from 
consideration. 

N O N L I N E A R  S M A L L - A M P L I T U D E  C O N C E N T R A T I O N  WAVES 

If the uniform state of a fluidized bed is unstable, the structure of disturbances cannot be 
described in the general case. Nevertheless, long small-amplitude nonlinear waves allow rather 
simple description in the considered model. 

The following procedure has been proposed by Sagdeev (1964) for the analysis of small- 
amplitude nonlinear waves in rarefied plasma and later applied to the concentration waves in 
ftuidized beds by Golo & Myasnikov (1975) in case of noninteracting solid particles and by 
Kurdyumov & Sergeev (1987) and Sergeev (1988) in case of interacting particles. 

From the sum of mass conservation equations [1] and [21, we find the following relationship 
between the velocities of phases and the voidage: 

cvr+ ~vp = 1 [51] 

where the constant in the RHS of [51] is found from the assumption on the undisturbed flow far 
from the disturbance (as z--+ oo). 

Expressing the fluid velocity through the velocity of the particle phase from [51] as 

vr = 8 ~(1 - ~Vp) [521 

the combined momentum equation [19], can be written in the form 

vp = v°p(c) + 7(~c Fr) 18n+28  z - -  (K Fr) 18"+2{[1 "t- De c l C ( 8 ) ] [ ( U p ) t - ~ -  Up(L,'p)z] 

- D e [ 1  + c 'C(c) l[(vr) ,+ v,-(v,-)z]} [53] 

where 

1 - De 
v°(s) = 1 e ''+2 [54] 

To study small-amplitude nonlinear waves we assume the parameter (x Fr) ~ to be small (i.e. 
~ 1, where ~ is given by [34]), so that the long waves are considered, and the external magnetic 

field and magnetizations of phases such that 7 "~ ~c Ft. 
Using [53] together with [52], we approximate Vp as a function of c by successive iterations to 

the accuracy of O[(~c Fr) 2] = O(¢2); this procedure corresponds to the branch of dispersion [47], 
i.e. to the waves propagating upwards without damping. Substituting the obtained iterative 
expressions for Vp into the mass conservation equation [18] yields 

at + c(e)q = Q [551 
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where c(e) is the kinematic wave velocity: 

c = 1 + x - I ( l  - De)en+l[n + 2 -  (n + 3)e] [56] 

(Sergeev 1985), Q is the sum of  the dissipative and dispersive terms of the orders 4 and 42 
respectively. It should be noted that the kinematic wave velocity in the uniform state Co can be 
obtained in the form [33] from [56], taking into account the first relation [31] between the 
parameters of  the uniform state. 

Neglecting Q the model considered by Sergeev (1985) can be obtained. In such a model the 
solutions are simple kinematic waves. 

For finite small-amplitude waves at 4 ~ 1 it can be supposed that an effect of  dispersion and 
dissipation is small, that the solution in the form of  a quasisimple wave (see Karpman 1973; 
Ablowitz & Segur 1981) can be considered: 

Vp = v°(e) + O(z, t) [57] 

where ~ = O(4). The waves propagating downwards can be neglected due to their rapid damping. 
Considering the small departure of the voidage from the uniform state: 

= t0 - - r /  ( a = a 0 + t / ) ,  t / , ~ l  [58] 

linearizing the RHS of  [55] and using the iterations to substitute at t = O(~ - ~) the space derivatives 
in Q instead of  time derivatives, we obtain for small-amplitude nonlinear concentration disturb- 
ances the Korteweg--de Vries-Burgers equation: 

r/t + (Co + flr/)q~ + ¢/~, r/z ~ - ~2/hq, ~ = 0 [59] 

where #j and /~2 are defined by [48] and [49] respectively, and 

f l = - ( d c )  = ( n + 2 ) [ ( n + 3 ) ~ ° - ( n + l ) ] ~  ~=,o ~ [60] 

The evolution of nonlinear concentration disturbances can now be analysed on the basis of  [59] 
by the known methods (see, for example, Ablowitz & Segur 1981; Karpman 1973). 

It can be assumed that an initial concentration disturbance is a simple wave described by the 
equation 

et + c(e)ez = 0. [61] 

The evolution of  the wave described by [6 l] indicates the formation of concentration discontinuities 
(Sergeev 1985; Fanucci et aL 1979; Kluwick 1983; Liu 1983; Needham & Merkin 1983). In the 
process of formation of the concentration jump the dissipative and dispersive phenomena start to 
play a role stabilizing a profile of the wavefront (Witham 1974); finally a formation of  the wavefront 
with sharp but continuous change of voidage (solid concentration), i.e. concentration shock front, 
can be expected. Small-amplitude nonlinear waves can lead to the formation of shock fronts in the 
case of unstable uniform states of  a fluidized bed as well as in case of stable states. 

The profile of the shock front can be studied with the help of a steady wave solution [59], 
tl = t l (Z- Dt), where D is the propagation speed. It must be noted that such a solution is a 
quasisteady solution of [17]-[19] for the approximation of  0(42). The well known methods 
developed for KdVB equation [59] (see Karpman 1973, Ablowitz & Segur 1981) give the following 
results. 

The voidage distribution at the wavefront is oscillating as #¢ >/2~, Im #c = 0 and monotonous 
as/~c < ~t~, Im/~c = 0, where 

/~c = x/2/hfl(e _ e+ ) = I x/2/,2 (e - _ e+)(n + 2)[(n + 3)e0 -- (n + I)1 [621 

e and e+ are the voidages ahead and behind the wavefront, respectively. 
We start with the unstable uniform state when Y0 < f~* where ~ ,  is given by [37]. From [48] it 

follows that in the unstable steady state/~ > 0. It is easily seen from [49] that / t  2 and/a~ are always 
IJMF 21/I F 
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of the same sign so that/~2 > 0. The rarefaction concentration shock front (e+ > e ,  a+ < ct_ ) occurs 
a s  

e , e+ < e ,  = (n + l)/(n + 3)-~ 0.655 [63] 

while the compression shock front, (e+ < e ), occurs as 

e_, ~+ > e , .  [64] 

The oscillations of  voidage (solid concentration) appear in both the cases behind the shock front. 
We must note here that within the considered approximation of not very short waves (4 '~ 1), the 
question on the existence of rarefaction shocks cannot be discussed. 

In the case of the stable uniform state (~0 > f t , )  the rarefaction shock front is possible as e_, 
e+ > e , ,  while the compression front--as  e_, ~+ < e , ;  like in the case of the unstable steady state, 
voidage oscillations appear behind the shock front. 

An analysis of the propagation speed of the shock is given in one of the following sections. 
The above results can be used for qualitative analysis of structure of boundaries of bubbles and 

slugs in a fluidized bed. 

F I N I T E - A M P L I T U D E  STEADY C O N C E N T R A T I O N  WAVES 

As in the above section, we consider long waves such that [46] is valid. Now we suppose that 
the magnetic field strength and magnetizations of  phases are high, such that 7 ~> O(x Fr). From 
[53] and [59] it can be concluded that in this case the effects of dissipation and dispersion produced 
by hydrodynamical phenomena are negligibly small compared to the dissipation produced by the 
magnetic interaction in the two-phase dispersion. 

Using the above assumptions, the last term in the RHS of [53] can be neglected, so that the 
combined momentum conservation equation, instead of as in [53], can be written in the form 

v 0 = v°(e) + (x Fr)-'7(e)#'+2ez [65] 

where v°(e) is given by [54]. Substituting [65] into the mass conservation equation, we obtain the 
following equation of  propagation of the long-amplitude wave: 

~ + c(e)ez = mL[e"+ 2(1 -- e)T(e)ez]z [66] 

where we introduced the new dimensionless parameter 

d p B g  [67] 
m L - -  1 8 t . t o p f v U  L • 

The dimensionless function T(e) in [66] is given by [22] in the general case, and by [23]-[29] in the 
particular cases considered in the first section. 

In the particular case of magnetically saturated solid particles in the nonmagnetic fluid, when 
T, given by [27], does not depend on e, [66] has been obtained and analysed by Sergeev & 
Muromsky (1994). The general qualitative description of the formation of concentration shock 
fronts has been given for small-amplitude nonlinear long waves; a structure of the wavefront, 
especially in case of a large amplitude, was not analysed in detail. 

To analyse the structure of the wavefront, we consider the propagation of nonlinear steady 
concentration wave. Introducing the "steady wave variable" 

Z = z - D t  [68] 

the equation of propagation of steady concentration wave can be written in the form 

[c(e) -- D ] e z  = m L [ S n + 2 ( 1  - -  e ) T ( e ) e z ] z  [69] 

where now e = e(Z). We consider the usual steady wave boundary conditions: 

~ = ~  as Z ~ + ~  

e = e +  as Z ~ - ~ .  [70] 



F r o m  [69] and B.C. [70] it follows that the propagation speed of  the steady wave is: 

1 t "~+ 1 - De 
D = [ T j J ~  c ( e ) d e = l + - - 6 ( e + , e r c  ) 

where 

[71] 

1.0 

6 = [~e" +21 [72] 
[d 

Here and below the square brackets are used to denote the jump of a parameter across the 
wavefront: 

[ A I = A + - - A .  [731 

It can be seen from [71] that the speed of  the steady wave approaches the kinematic wave velocity 
as the wave amplitude decreases ([e]--+ 0). 

The solution of the problem [69], [70] can be found in the implicit form 

taLK f~ ~/3"+2T(e) de [74] 
Z -  1 - D ~  i ( e ;  e+, e_) 

where we indicate only the upper limit in the integral; the lower limit is an arbitrary value of voidage 
within the interval (g+, g ) associated with the choice of the coordinate Z = 0; the function i in 
[74] is defined as 

tc c (e)  de D(e  - - - - -  -- e_) = ( ~ e " + 2 - - & ) - - ( ~ _ g  "+2 fie ). [75] 
i ( e ;  e+ ,e_)  1 - D e  

The function i (e) depends on E+ and e_ as parameters and does not depend on physical properties 
of  phases and other parameters of magnetic fluidized bed. The function i is zero at e = e and 
/3 = e + ~  

i ( e + ; e + , e _ ) = i ( e  ;e+ e _ ) = 0 .  [76] 

If  the function if(e) does not have another zero between e and g+ the steady wave exists, and 
from [74] it follows that the wave profile is monotonous. 

Since the kinematic wave velocity has the form shown in figure 2, where e .  given by [63] 
corresponds to the maximum of  c(e), from [75] and [71] it follows that i (e) does not have another 
zero between g and e+ and, henceforth, the steady wave exists if 

e_ and e + > e .  [77a] 

l -De  
=1 

I( 
C'+ 

E ;  
£_ 

C 

0.5 
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Figure  2. K inemat i c  wave velocity;  e and  e + - - v o i d  fract ions in f ront  of  and  behind the wavefront  
co r re spond ing  to the inequal i ty  [77a]; ~"  and  ~+ cor respond  to the inequal i ty  [77b]. 
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or 

and ~+ < e . .  [77b] 

The  inequalities [77a] and [77b] give the sufficient condit ions for the existence of  the steady wave. 
I f  [77a] or  [77b] are valid, the function ~b(e) has one of  two forms,  illustrated in figure 3(a). 

The  si tuat ion becomes more  compl ica ted when e+ and ~ lie on different (with respect to e , )  
sides of  the curve c(e), i.e. when 

e + < e . < e  or e < e . < e + .  [78] 

The  analysis o f  the R H S  of  [75] shows that  when [78] is valid, ~b(e) can have four  possible forms 
in dependence on the relation between e+ and e_, two are shown in figure 3(a) and another  two 
are il lustrated in figure 3(b). In the second case the function ~b(e) is zero at  e = ~c within the interval 
(e+, e_),  so that  the solution in the form of  a steady wave does not  exist. It  is seen f rom figure 
3(b) that  this fo rm of  the curve can exist only in the case when the derivatives of  ~b(e) are of  the 
same sign at  e = e+ and e = ~ . Hencefor th ,  the necessary and sufficient condi t ion for nonexistence 
of  a s teady concent ra t ion  wave can be written as follows: 

' ( e + ; e + , e _ ) > 0 ,  $ ' ( e _ ; E + , e  ) > 0  [79a] 

or  

@ ' ( e + ; e + , e  ) < 0 ,  @ ' ( e _ ; e + , e  ) < 0 .  [79b] 

In t roducing  the functions 

A+ (~+, e ) = [ e ] ¢ ' ( e +  ; ~+, e ) [80a] 

A ( e + , e ) = [ e ] ~ O ' ( e _ ; e + , e  ). [80b] 

f rom [75] and [72] we find: 

A+=c~  e " _ + z + e + " + 2 ( ( n + l ) - ( n + 2 ) e + ) - e ~ + ' e _ ( ( n + 2 ) - ( n + 3 ) e + )  [81a] 

A = - ~ + ~ " + 2 - e " + 2 ( ( n + l ) - ( n + 2 ) e  _ ). [81b] 

(a) 

- - 0  ' O - -  
E+ E_ 

E 

E 

~J - - 0  . o - -  

(b) 

~ E  c E_ 
- - 0  • • I~ - - 0  • O - -  

Figure 3. Sketch of possible behaviour of function O(e) within the interval (v,+ ,e,_ ). 
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In the plane (e+, e_) the boundaries of  the domain within which the steady wave does not exist 
are given by the algebraic equations: 

A+(e+ ,e_)  = 0, A_(e+, e_) = 0. [82] 

The domain of nonexistence of the steady wave obtained by the numerical solution of  the system 
[82] is shown in figure 4. 

It  must be noted that besides the lines drawn in figure 4 [82] has the trivial solution e+ = e ; 
such a solution must be withdrawn from the consideration since A+ and A do not change their 
signs across the line e+ = e_ (it can be easily checked that dA+/de = dA_/de = 0 at e = e+ = e_ ). 

Now we analyse the structure of  the steady wave in case when [77a] and [77b] are valid. To 
simplify the further consideration we suppose that both solid and liquid phases are magnetically 
saturated (including the case when one of the phases is magnetically saturated, and the other is 
nonmagnetic), so that T = constant is given by [26]. Since ~b = 0 only at e = e+ and e = e ,  
separating singularities we represent the integrant in [74] in the form 

0~e "+2 ~_ e"_+ 2[e] 1 0~+ e~_+2[e] 1 
x - -  + x - -  + R ( e ;  e+, e_ ) [83] 

~k(e;e+,e_) A (e+,e_)  e - - e _  A+(e+,e  ) e - - e +  

where the function R is regular within [e+, e ]. The solution [74] can now be written as 

mLICT r ~ 
Z = - 2 + ( e + , e  ) l n l e - e + l + 2  ( e + , e _ ) l n l e - e  l +  l _ D e j E _ R ( e ; e + , e _ ) d e  [841 

where 

a e_  [e] [851 
mLKT 0~+e~-+2[g] 2 _ -  mLKT . + 2  

2 + =  l - D e  x IA+t ' 1 - - D ~  x IA_I 

2+ and 2_ can be understood as the characteristic lengths of  the "exponential parts"  of  the wave 
profile when e approaches respectively e+ and e_. 

The thickness of  the wavefront can now be estimated as 

Lz = 2+ + 2_ + L R [86] 

where LR is the thickness of  the "regular"  part  of  the wavefront given by the last integral term 
in [84]. The direct calculation of  R(e) from [83] shows that when the inequalities [77a] and [77b] 
are valid, the function R(e; e+, e ) does not differ very much from the linear function within the 

0.8 ~ - - ~ - - ~ / / / / / A  / Steady wave 

e+ 0.6 

0.4 

0.2 0.4 0.6 0.8 

£ 

Figure 4. The domain of  nonexistence of  the steady wave (voidages lower than 0.2 are not illustrated). 



88 Yu. A. SERGEEV and D. A. DOBRITSYN 

interval [e+, e_ ]. Hence, the thickness of the regular part of the wavefront can be safely estimated 
as 

mLKT f~+ mLKT t 
LR-- I ~ D e  3~, Rd~  - I _ D ~ X ~ I R ( g + ; e + , ~ _ ) + R ( ~  ;e+,~ )l- [87] 

From the representation [83] it can be easily shown that 

[0¢e" + 2A ] 
R+ + R - - -  [88] 

A+A 

To estimate the thickness of the wavefront it is now convenient to return to the dimensional 
parameters. The total dimensional thickness of the wavefront L* can be written as 

L* = LoP(e+,g ) [89] 

where the length L0 can be found from [20], [26] and [67] as depending only on the physical 
properties of  both phases: 

= mLKT L 2 #0(Mps --  Mrs) 2 
Lo 1 - D e  = ~  ~ - - - ~ f )  [90] 

and the function P(e+, e ) follows from [85]-[88] in the form: 

/a+e,,++2 ~ _ ~ + 2 )  1 [~en+2A]. [91] 
P = l [ a ] l ~ +  IA I J + 2  A+A_ 

The function P(e+,  ~ ) is shown in figure 5, where figures a, b, c and d illustrate the behaviour 
of P when e+ and E are situated in different parts of (e+, e_)-plane with respect to the domain 
of nonexistence of the steady wave shown in figure 4. It can be seen from figure 5 that the thickness 
of the wavefront increases dramatically with approaching the boundaries of the domain of 
nonexistence of the steady wave. Besides, the thickness of the wavefront tends to infinity when 
~+ ~ ~ .  The last phenomenon can be easily understood since, within the considered long wave 
approximation, as e+ ~ e_ (=e0) the steady wave becomes a simple kinematic wave analysed by 
Sergeev (1985), Fanucci et al. (1979), Kluwick (1983), Liu (1983) and Needham & Merkin (1983). 
Since there is no shock formation in the propagation of the infinitely small-amplitude kinematic 
wave at e = ~0, the dimensionless length scale (i.e. the thickness of  the wavefront) is of the order 
of x Fr >> 1. Because we have supposed that 7 ~- O(K Fr) and omitted the terms of the orders higher 
than O(1) with respect to the small parameter (K Fr) ~ from [66], we find the infinite thickness of 
the steady wavefront at e+ = e . 

In the case when one or both phases are not magnetically saturated, the generalization of the 
formulae [89]-[91] can be represented as follows: 

B 2 { /~+e~+2T(e+) ~ E"+2T(~ )~ 1 [~a"+2Ar 

L*=l%(pp_pr)gdp [[dl~ f-~+i + [ A  I J + 2  A~+A- J [92] 

where one of the formulae for T(e) valid for a nonsaturated bed, i.e. [23]-[25] and [29], can be 
applied. 

To conclude this section we consider briefly the case when the solid concentration ahead of the 
wave is zero, ~ = 1. Such a situation corresponds, for example, to the upper boundary of a slug 
in a fluidized bed. In this case from [74] it follows that 

dE g=g_  
= m [93] 

dZ =l 

and a weak concentration discontinuity appears at the front of the wave. The steady wave has a 
structure shown in figure 6. In this case, from [85] we have 2 = 0. 

C O N C E N T R A T I O N  S H O C K  W A V E S  IN A F L U I D I Z E D  B E D  O F  M A G N E T I C  
P A R T I C L E S  

Below we analyse the propagation of plane concentration discontinuity (concentration shock 
wave). The dimensional parameters will be used in the following section. 
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Figure 5. P(e+, e ) as a function of the voidage behind the wavefront e÷ at fixed e_. Steady wave does 
not exist within the dashed domains. 

T o  simplify the fo l lowing analysis we consider the case when only solid particles are magnet izable  
and Mr = 0. 

Shock conditions 

T o  obtain the shock condit ions  from the continuity  and m o m e n t u m  conservat ion equations and 
the const i tut ive relations [6]-[14],  the Kotchine's  theory (1929) can be directly applied. 

The condit ions  o f  mass  conservat ion for the particle and fluid phases,  respectively,  are 

[eVr] = 0, [CtVp] = 0 [94] 
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£+ 

E 

Z 

Figure 6. Structure of  the steady wave at e_ = 1. 

where Vf and Vp are, respectively, the fluid and particle velocities in the coordinate system 
associated with the shock: 

V f = v r - O ,  V p = v p - O ,  [95] 

we remind that the square brackets are used to denote the jump of value across the shock, see [73]. 
For  the purposes of  this section it is convenient to represent the conditions of momentum 

conservation of phases in the form of the condition of conservation of the combined momentum: 

f f+ aM drip pf [e  V~] -k- pp [a V~] -f- [pf] - -  ]A 0 p ~ da = 0 [96] 

and the condition of conservation of the momentum of the fluid phase: 

f ~+ dpf 
pf[e V~] + e ~ -  de = 0. [97] 

It is worth noting that [96] can be interpreted as the condition of conservation of the total 
momentum flux tensor across the shock. In the general three-dimensional case when both particles 
and the fluid phase are magnetizable this tensor has the form: 

" +  a M  drip d~ - -  # 0  eMf de I + pp~ II(vp),(v~b II + +pfe II(vf),(vO/II H = f -  g0 P da 
[98] 

where (Vp)k and (vf)k are the components of vectors, I is the unit tensor (Iij = 6ij where 6ij is the 
Kronecker delta), [[vivj[[ the tensor with the components v~vj. 

The functions Mp(Hp) and Hp(c0 in [96] (as well as Mf(Hr) and Hf(e) in [98]) must be found 
from the system of equations and constitutive relations for the magnetic parameters [13] and [14]. 

The system of shock conditions [94]-[97] is not, however, closed. To close this system an 
additional constitutive relationship for the fluid pressure pf, as a function of voidage e valid at the 
shock surface, is required in order to calculate the integral in [97]. In principle, such a relation can 
be obtained based on the detailed study of the structure of the shock considered as a thin 
transitional layer of  continuous change of the voidage and flow parameters. The integral in [97] 
can be represented in the form 

e de = e ~z  dz [99] 

where 2A is the thickness of the transitional layer (it is natural to assume that A is of the order 
of particle size dp). To calculate the integral [99] an additional model of the structure of transitional 
layer (in particular, the voidage distribution within the layer) is required. The development of such 
a model is, however, beyond the purpose of this paper. 
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The system of shock conditions can be closed without the detailed consideration of the structure 
of the shock in case of gas-solid dispersion. Since Pr '~ Pp, neglecting the first term in [97] we find 

f +~ ~pr -~ e ~ z  dz = 0. [100] 

It is natural to assume the monotonous change of e and, henceforth, pf and other flow parameters 
within the transitional layer, so that we immediately obtain 

[pf] = 0. [101] 

The last condition can be derived, without any additional assumption regarding the structure 
of the transitional layer, directly from the equation of momentum conservation of the fluid phase. 
As Pr '~ Pp and ffm = 0, [4] reduces to 

pfv 
+ 18-~- a~(e)u =0 .  [102] 

~p  

Applying Kotchine's theory to [102] readily yields [101]. 
As soon as the integral in [96] is calculated, the system of shock conditions [94]-[96] and [101] 

for the gas-solid dispersion becomes closed. 
For strong magnetic fields, when the solid phase is magnetically saturated so that 

Mp = Mp~ = constant from [13] and [14], we have 

d r i p _  2 [103] 
d~ 3Mps 

and the integral in [96] becomes: 

f ' ÷  = ~Mp~(ct_ + ~x+)[~]. [104] 
drip 

- lZ 0 0imp ~ d ~  l 2 

In case of a relatively "weak" magnetic field when the magnetization of solid material is linear 
with respect to the magnetic field, i.e. Mp = ;~pHp where ;(p = constant, from [13] and [14] we have: 

drip d~ 6Bo Zp 
- -  - -  x - -  [ 1 0 5 ]  

dot P0 W2(~) 

and the integral in [96] becomes: 

f ~+otM drip 36B0:ZSpCt ct+[ct] 
- -  '% P d a  do~ = - [106] 

_ /a0 W 2 ( ~ _  ) W 2 ( ~ +  ) 

where 

W(a) = Zp(1 + 2a) + 3. [107] 

2/•0 ~ 

%= Mps 4 - ~  • [109] 

Shock speed, speed of "sound" 

To calculate the finite-amplitude shock speed we consider the gas-solid fluidized bed, so that 
Pr ~ Pp. In the case of the magnetically saturated suspension from [94]-[96], [101] and [104] the 
speed of the finite-amplitude concentration shock D 8 follows in the form: 

9 2 = J  2 ~ + ( a + + ~ - )  
~/A0 M p s  [1081 

P p ~  

The speed of "sound" in the two-phase gas-solid dispersion % can be obtained from [108] as 
a speed of an infinitesimal shock: 
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For the relatively weak magnetic field when the magnetization is linear with respect to the field 
strength, from [94]-[96], [101] and [106] we obtain: 

6BoZp~+ f 
/_ Zp [110] 

6BoZoC~ / Z/.__ [1 i 1] 
% -  W2(~) ~/.Uopp 

where W(~) is given by [107]. 
It must be underlined that there are two "speeds of  sound" in a magnetic gas-solid ftuidized bed: 

Csg, corresponding to the wave driven by the stress created by the magnetic field, and Co, kinematic 
wave velocity determined by the third relationship in [33]. While the long waves, as well as steady 
waves considered in the previous sections, always propagate upwards (long waves propagating 
downwards damp very rapidly), the shock waves considered in this section can propagate both 
upwards and downwards. It can be easily understood from [32], since the kinematic wave velocity 
is the lower order characteristic velocity, while the speed of "sound" given by [109] or [111] 
corresponds to the characteristic velocities of the higher order (c~ = - c2 for the gas-solid fluidized 
bed). 

Below we call waves propagating upwards as "right" and downwards as "left" waves 
respectively; the signs, plus and minus, in [110] correspond to the "right" and "left" waves. 

Since in the framework of the considered model the shock conditions cannot be formulated in 
the closed form for liquid-solid suspensions, to estimate the role of inertia of the fluid phase in 
the shock propagation process we consider below the propagation of weak shocks. The propagation 
speed of the weak shock is equal to the characteristic velocity of the higher order cl.2 given by [34]; 
the signs, plus and minus, in [34] correspond to the "right" and "left" waves. 

For the purpose of  this section it is convenient to express the propagation speed of the shock 
in the liquid-solid fluidized bed through the speed of the weak shock in the gas-solid dispersion 
at the same values of solid concentration and magnetic parameters of the particle phase. We note 
that the magnetic parameter 7 can be expressed from [34] through the speed of the weak shock 
(speed of "sound")  in the gas-solid fluidized bed (pf '~ pp SO that De ,~ 1) as follows: 

2 

Csg [112] 
- 7U 2 • 

Incorporating [112], from [21] and [24] or [27] the expressions [109] and [111] can be easily obtained. 
At C = e/2, incorporating [112] into [35], we obtain the expressions respectively for the "right" and 
"left" speeds of the weak shock (i.e. "right" and "left" speeds of "sound")  in the liquid-solid 
suspension 

(c~t)+ = c,, (Cs,)_ = c2 [113] 

through the speed of "sound" in the gas-solid suspension. The "right" and "left" speeds of 
"sound" for the suspension of glass particles in a water (De = 0.36) are illustrated in figure 7. 

We need to note here that while the "left" and "right" shock waves in the gas-solid fluidized 
bed (as Pr '~ Pp) propagate with the equal speed, the effect of the motion of the heavy liquid through 
the array of particles (i.e. at Pr = O(PrO) leads to the pronounced difference in "left" and "right" 
speeds. 

R EMAR K:  ON N O N L I N E A R  WAVES IN THE P A R T I C L E  BED MODEL BY 
FOSCOLO G I B I L A R O  

The basic equations of the widely known "Particle bed" model of a conventional (magnetically 
neutral) fluidized bed, proposed and developed by Foscolo & Gibilaro (1984, 1987), show a close 
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Figure 7. Speed of the weak shock (speed of  "sound")  in the liquid-solid fluidized bed as function of 
voidage; (Csl)÷ and (cst )_ - - " r i gh t "  and "left" speeds respectively. 

similarity to the considered equations of a fluidized bed with both magnetizable phases. The main 
feature of  the "particle bed" model is the term 

t3e 
3.2gdp (pp - -  Pf)~ ~ZZ [1 14] 

which appears with the opposite signs in the momentum conservation equations for both phases. 
The force [ll4] is considered by Foscolo & Gibilaro as an additional component of  the 
fluid-particle interaction force due to the effect of solid concentration gradient in the bed. 

Since the magnetic forces [ll]  and [12] in the model of the present work can be expressed as 

t3e t~e 
ffm = mr(e) ~ ,  fpm = m p ( e )  - -  [115] 

dz 

where 

mf(8) = # 0 e M f ( e )  ~ f ,  mp(e) = #0~Mo(e ) d e  [116] 

and Mr(e), Hr(e), Mp(e), and Hp(e) can be found as function ore, as a solution of the closed system 
of equations [13] and [14] (the equations of magnetic field with the Clausius-Mosotti relation 
between the magnetic parameters and the solid concentration), the formal similarity of the basic 
equations of both models becomes obvious. 

The basic equations of the model by Foscolo & Gibilaro can be reduced to the system of partial 
differential equations [17]-[19] (at C = 0) for vo, vr and e used in the present work with the 
dimensionless function ~(e) defined as 

7(e) = 3.2gdp(1 - De) 
U2 ~ [117] 

This formal analogy enables to expect that the classes of nonlinear concentration waves considered 
in the present work, i.e. nonlinear small-amplitude waves, steady waves and concentration shock 
waves can be analysed within the framework of ,:he Foscolo & Gibilaro model. It must be noted 
that the propagation of linear waves and stability of the uniform state were analysed in detail by 
Foscolo & Gibilaro (1987). Based on the "particle bed" model, the analysis of propagation of 
concentration shock waves in a conventional fluidized bed has been already given by Brandani & 
Foscolo in their very recent publication (1994). 
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